Give an account of the growth and development of nuclear science and technology in India. What is the advantage of fast breeder reactor programme in India?. (UPSC IAS Mains 2017 General Studies Paper – 3)

India’s journey in the field of nuclear science and technology began with the formation of Department of Atomic Energy (DAE) in 1954. The aim was to harness nuclear resources for peaceful purposes. India had to surpass the obstacle of technology denial by capable nations.

In this background  three-stage nuclear power programme was formulated by Dr. Homi Bhabha in 1950s to secure country’s long term energy independence, through use of uranium and thorium reserves found in the monazite sands of coastal regions of South India.

The ultimate focus of the programme is on enabling thorium reserves of India to be utilised in meeting country''s energy requirements. Thorium is particularly attractive for India, as it has not only around 1–2% of the global Uranium reserves, but one of the largest shares of global Thorium reserves at about 25% of the world''s known Thorium reserves.

The three stages adopted were

  • Natural uranium fuelled Pressurized Heavy Water Reactors (PWHR)
  • Fast Breeder Reactors (FBRs) utilizing plutonium based fuel
  • Advanced nuclear power systems for utilization of Thorium

At present only stage 1 is operational and all 22 functional nuclear reactor in India belongs to this stage with total capacity of 6780 MW. At present, the fast breeder reactor programme in India is carried out by Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamilnadu.

The advantage with a breeder reactor is that it generates more fissile material than it consumes. Also in the second stage, fast breeder reactors (FBRs) would use Plutonium-239, recovered by reprocessing spent fuel from the first stage, and natural uranium.

This technology does not contribute to air pollution, except during mining and processing of Uranium ore. Breeder reactors use a small core, which is important to sustain chain reactions. Besides, they do not even need moderators for slowing down neutrons, as they use fast neutrons.

In FBRs, plutonium-239 undergoes fission to produce energy, while the uranium-238 present in the fuel transmutes to additional plutonium-239. Furthermore, once a sufficient amount of plutonium-239 is built up, thorium will be used in the reactor, to produce Uranium-233. This uranium is crucial for the third stage. 



POSTED ON 25-01-2024 BY ADMIN
Next previous